Time transformation for random walks in the quenched trap model.
نویسندگان
چکیده
We investigate subdiffusion in the quenched trap model by mapping the problem onto a new stochastic process: Brownian motion stopped at the operational time S(α) = ∑(x=-∞)(∞) (n(x))(α) where n(x) is the visitation number at site x and α is a measure of the disorder. In the limit of zero temperature we recover the renormalization group solution found by Monthus. Our approach is an alternative to the renormalization group and is capable of dealing with any disorder strength.
منابع مشابه
Anomalous diffusion in a quenched-trap model on fractal lattices.
Models with mixed origins of anomalous subdiffusion have been considered important for understanding transport in biological systems. Here one such mixed model, the quenched-trap model (QTM) on fractal lattices, is investigated. It is shown that both ensemble- and time-averaged mean-square displacements (MSDs) show subdiffusion with different scaling exponents, i.e., this system shows weak ergo...
متن کاملWeak subordination breaking for the quenched trap model.
We map the problem of diffusion in the quenched trap model onto a different stochastic process: Brownian motion that is terminated at the coverage time S(α)=∑(x=-∞)(∞)(n(x))(α), with n(x) being the number of visits to site x. Here 0<α=T/T(g)<1 is a measure of the disorder in the original model. This mapping allows us to treat the intricate correlations in the underlying random walk in the rando...
متن کاملScaling Limit for Trap Models on Z
We give the " quenched " scaling limit of Bouchaud's trap model in d ≥ 2. This scaling limit is the fractional-kinetics process, that is the time change of a d-dimensional Brownian motion by the inverse of an independent α-stable subordinator. 1. Introduction. This work establishes scaling limits for certain important models of trapped random walks on Z d. More precisely we show that Bouchaud's...
متن کاملQuenched Limit Theorems for Nearest Neighbour Random Walks in 1d Random Environment
It is well known that random walks in one dimensional random environment can exhibit subdiffusive behavior due to presence of traps. In this paper we show that the passage times of different traps are asymptotically independent exponential random variables with parameters forming, asymptotically, a Poisson process. This allows us to prove weak quenched limit theorems in the subdiffusive regime ...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 106 14 شماره
صفحات -
تاریخ انتشار 2011